
Orthorhombic LiMnO2 was synthesized using LiOH and γ-
MnOOH at 1000 °C in the argon flow by quenching method. X-
ray diffraction revealed that the LiMnO2 showed a well-defined
orthorhombic phase of a space group with Pmnm.  The lattice
constants were a = 2.806 Å, b = 5.750 Å, and c = 4.593 Å.  The
LiMnO2 after grinding delivered 212 mAh/g in the 9th cycle
and still delivered 200 mAh/g after 50 cycles at room tempera-
ture.  The well-defined orthorhombic LiMnO2 by the quenching
method exhibited an excellent cycle performance.

The layered oxide materials, LiMO2 (M=Co, Ni, Mn…)
and the LiMn2O4 spinel are the most widely studied from the
viewpoint of their application to 4 V cathode materials for lithi-
um secondary batteries.1,2 The Mn-based materials have
attracted wide attention as intercalation cathode materials
because of their low cost and nontoxicity.

Orthorhombic LiMnO2 (herein referred to as o-LiMnO2) of
the ordered rock salt structure described by Johnston et al.3 and
Hoppe et al.4 has been studied by many research groups.5–10

The low temperature synthesis (170–450 °C) first reported by
Ohzuku et al. showed a large rechargeable capacity above 190
mAh/g using lithium hydroxide and manganite at 450 °C.5

Reimers et al. also reported a new ion exchange method and
revealed an irreversible structural change to the spinel phase
using in situ XRD.6

Davidson et al. and Jang et al. have also reported the synthe-
sis of o-LiMnO2 material by a high temperature synthetic method
(> 800 °C).8–10 Jang et al. successfully synthesized o-LiMnO2
using LiOH and Mn3O4 under a reduced oxygen atmosphere by a
high temperature synthetic method, which exhibited an excellent
cycleability at room temperature between 4.4 and 2.0 V. Although
they also first reported the high temperature performance at 55 °C,
the capacity loss of o-LiMnO2 at high temperature was much larg-
er than that during the room temperature test.10

From a review of previous studies, we found the following
problems: First, the complexity of the synthetic process.  For the
low temperature synthesis, most cases used an excess amount of
lithium salt or lithium/sodium exchange reaction to form the
homogeneous LiMnO2 phase, which requires a long reaction
time and other reaction steps.  Even for the high temperature syn-
thesis, very sensitive synthetic conditions and some treatments to
improve the reaction between the starting materials are necessary.
Second, there is no report showing a good cycle performance of
o-LiMnO2 at high temperature.  And last, o-LiMnO2, which was
synthesized at high temperature, needed enough time to reach the
maximum discharge capacity at room temperature.  Although it
critically depends on current density and the cycle testing condi-
tions, this indication is not desirable for the use of this cathode
material for lithium secondary batteries.

Recently, we reported that the LiAl0.1Mn1.9O4 material

using LiOH and γ-MnOOH showed a quite good cycleability in
both the 3 and 4 V regions.11,12 Furthermore, tetragonal
Li2Mn2O4 material, which was synthesized using LiI as a
reducing agent, showed not only a high discharge capacity over
200 mAh/g, but also good cycle performance in the (3+4) V
region.13 Based on our previous research, we successfully syn-
thesized a new type of o-LiMnO2 material using LiOH and γ-
MnOOH by a quenching method.  In this paper, we report a
new synthetic method and cycle characterization of o-LiMnO2,
which can satisfy the above problems at the same time.

The o-LiMnO2 material was synthesized using LiOH·H2O
and γ-MnOOH. The mixture of LiOH and γ-MnOOH (molar
ratio of Li/Mn = 1.02) was thoroughly ground in an agate.  A
small amount of lithium was added to compensate for lithium
evaporation during the calcination process.  It was pressed at a
300 kg/cm2 pressure into a 25-mm diameter pellet. It calcined
at 950–1100 °C for 10 h in the box furnace under argon at a
flow rate of 500 cm3/min.  The powder X-ray diffraction
(XRD) using Cu Kα radiation was employed to identify the
crystalline phase of the synthesized materials.  The electro-
chemical tests were performed using CR2032 coin-type cells.
The cells were assembled as detailed elsewhere.11,12 The
charge and discharge cycling was performed at a current densi-
ty of 0.4 mA/cm2 (40 mA/g) with a cut-off voltage of 2.0–4.5 V
at room and high temperatures.

The chemical analysis showed that the powder real compo-
sition obtained at 1000 °C was Li0.99MnO2.01.  Well-defined o-
LiMnO2 was obtained from the calcination at 1000–1050 °C for
10 h under argon flow by quenching.  The pellet was removed
from the furnace at 1000 °C and directly quenched in air.  We
would like to emphasize that LiMnO2 in this study was synthe-
sized by a one-step method without intermediate regrinding or
some other treatments.  From the thermal analysis, it revealed
another reaction at about 950 °C that may be the conversion
from the LiMn2O4 spinel phase, which occurred at about 800
°C, to the o-LiMnO2 compound.  Figure 1(a) shows the XRD
pattern of the o-LiMnO2 materials obtained at 1000 °C.  For
calcination temperature T < 950 °C, it showed mixed structure
patterns with cubic and tetragonal phase in the XRD diagram.
However, when the calcination temperature is above 950 °C,
the (010) peak at 2θ = 15.4° was rapidly increased and other
peaks also indicated a major phase of the o-LiMnO2 material.
The lattice constants are a = 2.806 Å, b = 5.750 Å, and c =
4.593 Å, which showed a slightly large c-value compared with
other reports.4,5 This material consisted of particles of about
5–15 µm diameter with a bar-shape and small spherical ones of
about 2–3 µm, which is the typical crystallite pattern of the
compound using the γ-MnOOH.14 Figure 1(b) shows the dis-
charge capacity of the LiMnO2 electrode as a function of the
cycle number at room and high temperatures (50 °C).  The
LiMnO2 electrode, which was cycled at room temperature,
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showed a very small initial discharge capacity of about 34
mAh/g and a slowly increasing capacity on cycling.  However,
for the high temperature test cell, even if it also showed a small
initial discharge capacity during the first cycle, the capacity
increasing was very fast and reached a maximum point during
the early stage.  This is characteristic of the o-LiMnO2 using the
high temperature synthetic method.  Although Jang et al. have
already reported a similar result for o-LiMnO2, which exhibited
a rather good cycleability under almost the same test conditions,
the discharge capacity continuously decreased and reached
about 80 mAh/g after the 100th cycle.10 However, the LiMnO2
in this study delivered 186 mAh/g during the 10th cycle and still
delivered 176 mAh/g after 100 cycles at high temperature. The
cycle retention rate is 95% in the 3 and 4 V regions. 

Although o-LiMnO2 in this study showed excellent cycling
performance in the high temperature test, it is not desirable to
use a cathode material for lithium secondary batteries as
described above.  Croguennec et al. reported the effect of the
crystal and grain sizes of o-LiMnO2 on the various discharge
capacities.15,16 Therefore, we assume that the grinding treat-
ment is a very useful way to change the characteristic of o-
LiMnO2, because it showed a relatively large particle size of
about 5–15 µm, which affected the contact between the elec-
trolyte and particle surface.  In order to increase the initial dis-
charge capacity of o-LiMnO2, it was thoroughly ground in an
agate mortar by a milling machine (ANM 1000, Nito. Co.,
Japan).  The average particle size and shape of LiMnO2 after
grinding was surprisingly decreased and changed compared to
that of the original o-LiMnO2.  The average particle size for the
compound after 6 h grinding was 0.5–3 µm.  Furthermore, BET
analysis strongly supported our assumption about the grinding
effect for o-LiMnO2 material.  The surface areas of the two
compounds were 0.55 m2/g before grinding and 9.25 m2/g after
6 h grinding.  It is noticeable that the specific surface area after
6 h grinding was as much as 17 times larger than that before
grinding.  This unique characteristic was due to the large parti-
cle size of o-LiMnO2 material which was obtained by quench-
ing method.

Figure 2 shows the cycle characterization of LiMnO2 cells
after 6 h grinding.  As expected, it showed a very high initial dis-
charge capacity of 193 mAh/g as well as a good cycleability at
room temperature.  The difference in the initial discharge capaci-
ty between before and after grinding at room temperature was
about 160 mAh/g.  Although the cycle retention rate of LiMnO2
after grinding decreased to 87% in the high temperature test, it
still exhibited a fairly good cycle performance up to 50 cycles.
From these results, o-LiMnO2 in this study has a high possibility
to be commercialized as a cathode material for lithium secondary
batteries by optimizing the condition of pulverization.

The o-LiMnO2 in this study could be obtained at 1000 °C
by quenching and it showed a high initial discharge capacity (≥
190 mAh/g), which accelerated the rapid reaction between the
particles and electrolyte at room temperature by grinding.  A
more detailed discussion about electrochemical properties and
capacity loss mechanism will be reported elsewhere.
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